

Studiengruppe für Elektronische Instrumentierung der Helmholtz-Zentren

109. Tagung der Studiengruppe elektronische Instrumentierung im Frühjahr 2018

in Dresden-Rossendorf vom 16. April - 18. April 2018

Editor: Peter Göttlicher (DESY) Verlag Deutsches Elektronen-Synchrotron

Impressum

109. Tagung der Studiengruppe elektronische Instrumentierung im Frühjahr 2018 16.-18. April 2018, HZDR, Dresden-Rossendorf, Deutschland

Conference Homepage https://indico.desy.de/indico/event/19389/overview oder https://indico.desy.de//event/SEL2018

Online Proceedings auf http://www-library.desy.de/confprocs.html

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Editor: Peter Göttlicher Februar 2020 DESY-PROC-2018-02 ISBN: 978-3-945931-18-9 ISSN 1435-8077

Published by Verlag Deutsches Elektronen-Synchrotron Notkestraße 85 22607 Hamburg Germany

Printed by Kopierzentrale Deutsches Elektronen-Synchrotron

109. Tagung der Studiengruppe elektronische Instrumentierung im Frühjahr 2018

SEI - Studiengruppe elektronische Instrumentierung der Helmholtz-Zentren HZDR (Dresden Rossendorf), 16. April - 18. April 2018

Inhaltsverzeichnis

Allgemeines und Zusammenfassendes Eröffnung und Ausblick	P. Göttlicher	3
Bild der Teilnehmer		4
Tagungsprogramm		5

Vorträge

The ELBE Radiation Source at HZDR	P. Michel	8
New developments and experience with real-time signal processing for beam diagnostics at COSY.	I. Bekman, K. Reimers	22
FPGA basierte Testbench für 10Gbit Daten-Module des ATLAS Trackers	J. Wolff	38
Direct Sampling FMC for High-Speed Data Acquisition	J. Zink	48
Future Upgrades of the BCM1F Detector at CMS	F. Rüde	58
ENTWICKLUNG VON PROGRAMMEN zum Ausle- sen und Kalibrieren eines neuartigen Detektorsystems	A. Steffens	66
Datenbankgestützte Produktdatenarchivierung	M. Meyer	85

MicroTCA Technology Lab - A Helmholtz Innovation Lab at DESY	MicraTCA Technology Lab, DESY.MSK Maschine Strahlkontrollen	97
N.A.T. Solutions for MTCA.4.1 - Complete and EASY to Use	N.A.T. GmbH	98
Einsatz von PROFINET in der Neutronenstreuung	H. Kleines	99
EtherCAT in Motoion - Motoransteuerung durch Mikro- controller mit EtherCAT on Chip	M. Wünsche, J. Waßmann	111
Automatisierung eine Anlage zum Transport flüssiger sowie gasförmiger Radionuklide	H. Tietze	122
Elektromagnetiscche Einkopplungen in Kabel	W. Sorge	133
Verification of a 65 nm CMOS IC for various applications	C. Roth	141
IPSBE: Interatives Pipeline-System fr Bildverarbeitung in Echtzeit	S. König, W. Oertel, P. Kaever	155
CompactRIO with NI-DAQ	P. Simandl	159
Agile Software Development using GitLab and GitLab CI	T. Frust, G. Juckeland	175
Optische Terabit Datenübertragung	L. Eisenblätter	182

Workshop FPGA basierte DAQ-Systeme

P. Kaever, J. Burmester

195

Peter Göttlicher DESY-FEB 10. September 2018

Eröffnung

Elektronik und Datenerfassung, sowie deren Fertigung und Programmierung in der Forschung ist die Thematik eines jährlichen Treffens. Mitarbeiter und Mitarbeiterinnen der Helmholtz-Zentren und anderer Institute und Firmen sind eingeladen. Hierzu wird eine Tagung organisiert, auf der Entwickler, Techniker/innen, Ingenieure/innen und Wissenschaftler/innen ihre Aktivitäten vorstellen. Es soll viel Zeit zur Diskussion bleiben.

Dieses Jahr waren neben den Helmholtz-Zentren DESY, FZJ, GSI, HZG, HZDR und KIT weitere Forschungszentren, Universitäten und Industriepartner vertreten, so dass sich ein vielfältiges Programm ergeben hat, das viele Aspekte von Sensor bis zum System umfasste:

- Schnelle Datenaufnahme, -verarbeitung und -übertragung
- ASIC's zur spezifischen Messsignalaufbereitung.
- Kontrolle von Aktoren und Auslese langsamerer Sensoren
- Bau von Instrumenten, Detektoren und Systemen
- Industriegeräte für Forschungsanwendungen
- Dokumentation der Produkte ber den Lebenszyklus

Ein halber Tag wurde genutzt, die Forschungseinrichtungen des gastgebenden Zentrum HZDR zu besichtigen. Es wurde durch das HLD-labor mit hohen Magnetfeldern, dass SIMS, secondary ion mass spectrometer, und das IBC, ion beam center, geführt.

Das Tagungsprogramm ist auf dem Internet einzusehen: https://indico.desy.de/indico/event/19389/overview oder https://indico.desy.de//event/SEL_2018 Die Homepage der Studiengruppe ist auf http://sei.desy.de/ zu finden.

Ein halbtägiger Workshop über FPGA basierte DAQ-Systeme im Anschluss diente dazu, sich mit kleinen Beiträgen über allgemeine und bereits an den Zentren Techniken auszutauschen und offen über Erfahrungen, Erfolge und Probleme zu reden. Ziel ist es dabei von einander zu profitieren und Zusammenarbeit zu fördern.

Ausblick

Die nächste Tagung wird für das Frühjahr 2019 am FZJ-ZEA2 geplant.

Foto der Teilnehmer, Bilderstelluing und Copyright bei der PR-Abteilung des HZDR

Tagungsprogramm

M	Montag				
12:00	Ankunft				
		12:00 - 13:00			
13:00	Eröffnung	Dr. Peter GOETTLICHER			
		13:00 - 13:05			
	Vorstellung des HZDR	Dr. Ulrich BREUER			
		13:10 - 13:30			
	Vorstellung der Strahlungsquelle ELBE	Prof. Dr. Peter MICHEL			
		13:30 - 13:50			
14:00	New developments and experience with real-time signal processing for beam diagnostics at COSY	Mr. Ilja BEKMAN			
	FPGA-based Quantum Feedback for Superconducting Qubits	Mr. Richard GEBAUER			
		14:23 - 14:46			
	FPGA basierte Testbench fuer 10Gbit Daten-Module des ATLAS Trackers	Mr. Jonas WOLFF			
15:00		14:46 - 15:09			
	Direct Sampling FMC for High-Speed Data Acquisition	Mr. Johannes ZINK			
	KAFFEE-Mo				
		15:32 - 16:00			
16:00	Bestimmung des aquatischen Rückstreukoeffizienten	Dr. Felix THEOPOLD			
	Hubbs vom Moßprinzin zum vollautomatischen Soncer	16:00 - 16:23			
		16:23 - 16:46			
	Datenlogger für den AMD	Mr. Franz Peter ZANTIS			
17:00		16:46 - 17:09			
	Future Upgrades of the BCM1F Detector at CMS	Mr. Alexander RÜDE			
		17:09 - 17:32			
	Entwicklung von Programmen zum Auslesen und Kalibrieren eines neuartigen Detektorsystems	Mr. Alexander STEFFENS			

18:00

Dienstag

09:00	AI/ML und	FPGAs - Artifi	cal Intelligen	ce/Machine L	earning		Mr. Jens	STAPELFELDT
							(08:59 - 09:19
	Datenbank	gestützte Proc	duktdatenarch	nivierung			Mr. N	Markus MEYER
							(09:19 - 09:42
	Fertigung v Deutschlan	on Leiterplatt d und China	en Prototype	n - Erfahrung	en mit Dienst	leistern aus	Dr. Ph	ilipp FÖDISCH
10:00	FOTO-Term	in						
								10:05 - 10:15
	CAEN -Netzteile	Farnell GmbH	ISEG - Hochspannu Crates, Controller	Kniel - ngevæienegu für die gestresste Entwicklerse	Ausstellung 해원cal SmartHeat Löt- 영업tionen, Schadstoff-	MTCA - N.A.T. GmbH - innovation in communicat	Test-und Meßtechnik von Tektronix/K	KAFFEEDi Mittagessen, verteilt pialatiel zu den
11:00					Absaugung, Dosiertechn	MicroTCA Technology Lab (A Helmholtz Innovation Lab)		Ausstenungen
12:00								
13:00	CS++ - Sta	tus and Outloo	ok				Dr. Holg	ger BRAND
								13:00 - 13:23
	Labview -	Actor Framew	ork in Action				MS. N	ICOIE WAGNER
	Migration		laorithmen a	If einem APM	Mikrocontrol	ller mittels	Mr	13:23 - 13:40
14:00	automatisc	her Codegene	rierung				1011 -	LEONTETERS
	Evaluierung Datenübert	g verschieden ragung in ein	er Kommunika em drahtloser	ationsprotoko n ESP8266 Ne	olle und Versu stzwerk	uchsaufbaute	n zur Mr. Do	ominik HOVEN
	HLD Labor	- high magnet	ic field			Dr. 7	homas HERRM	ANNSDÖRFER
15:00								14:45 - 15:30
	SIMS - seco	ondary ion ma	SS	Dr. RENNO	IBC - ion be	eam center I	Dr. A	AKHMADALIEV
16:00	spectromet	er I						
				15:45 - 16:30				15-45 - 16-30
	IBC - ion be	eam center II	Dr. AKI	HMALIEV et al.	SIMS - seco	ondary ion ma er II	ISS	Dr. RENNO
17:00				16:30 - 17:15				16:30 - 17:15

Mittwoch

09:00	Einsatz von PROFINET IO in der Neutronenstreuung	Mr. Harald KLEINES
		09:00 - 09:23
	Motoransteuerung durch Mikrocontroller mit EtherCAT on Chip	Dr. Peter KAEVER
		09:23 - 09:46
10.00	Automatisierung einer Anlage zum Transport flüssiger sowie gasförmiger Radionuklide	Mr. Henrik TIETZE
10:00		
	Über Vorhersagen zu Störeinkopplungen in verlegte Kabel mit dem Feldberechnungsprogramm CONCEPT II	Dr. Wolfram SORGE
	Verification of a 65nm CMOS IC for various applications (neutrino detection, hig energy physics, etc.)	Jh Mr. Christian ROTH
11.00	KAFFEE - MI	
11.00		
		10:55 - 11:25
	IPSBE: Interatives Pipeline-System für Bildverarbeitung in Echtzeit	Mr. Stefan KONIG
		11:25 - 11:48
	CompactRIO with DAQmx - FPGA based control and easy measurements in one device	Mr. Peter SIMANDL
12:00		
	Agile Softwareentwicklung mit GitLab	Mr. Guido JUCKELAND
		12:11 - 12:34
	Optische Terabitdatenübertragung	Mr. Lars EISENBLÄTTER
		12:35 - 12:58
13:00	Abschluss und Ausblick	
		13:00 - 13:10
	Mittag-Mi	
		13:10 - 14:00
14:00	Workshop: FPGA basierte DAQ-Systeme	
15:00		
16:00		
		14:00 - 17:00
17.00		

Peter Michel Institute of Radiation Physics

Outline

- ELBE superconducting accelerator
- examples for secondary radiation generation
- user facility aspects

Studiengruppe für Elektronische Instrumentierung der Helmholtz-Zentren 16.-18. April 2018 HZDR

HZDR

Member of the He

	FEL1 (U37)*	FEL2 (U100)
Spectrum	5 – 40 µm	18 – 250 μm
	7.5 – 60 THz	1.2 – 16.7 THz
Avg. power	≤ 44 W	65 W (42, 83 μm)
Pulsewidth	0.7 – 4 ps	1 – 25 ps
Peak power	≤ 1.5 MW	≤ 5 MW
	34W/14.3µm/0.7ps	
Max. pulse energy	≤ 3.4 µJ	5 µJ
Peak Field	≤ 5 MV/cm (TBD)	≤ 600 kV/cm
(λ / d / t _p)		30µm/300mm/3.5ps
Bandwidth $\Delta\lambda/\lambda$	0.4 – 3.4 %	0.4 – 2 %
Linear polarization	> 98 %	> 98 %

Beam Position Monitor: DAQ

Principle

- Vacuum enclosed Harps collecting O(pA) charges
- two lateral directions are measured
- Beagle Bone single board computer for reading the ADC electronics runs EPICS IOC

Member of the Helmholtz Association

April 16, 2018

Slide 12

33

JÜLICH

 COSY introduce Multiple upgrad Operators using To transfer mor Usage of standard interfation 	d des of the diagno g new hardware v e hardware to EP ardised SoC (Red ace	stics systems via EPICS control sys PICS Pitaya) with custo	tem m firmware and
Member of the Helmholtz Association	April 16, 2018	Slide 17	U JÜLICH Forschungszentrum
Backup inform	nation		
contact: i.bekman@fz-jue	elich.de , k.reimers@f	z-juelich.de	
References and Further	Reading		
 "EPICS Database", K "Experimental Physic "Red Pitaya STEMlab http://redpitaya C. Böhme et al., "CO Michigan, USA. "Libera Hadron BPM https://m.i-tech 	asemir. K (SNS/ORNL s and Industrial Contro Documentation". Re readthedocs.io SY Orbit Control Upgr "; si/accelerators), Sep. 2014, FRIB; East La rol System"; http://www lease 0.97; rade", Proceedings of IBIC -instrumentation/lil	nsing, MI, USA .aps.anl.gov/epics 2017, Grand Rapids, pera-hadron

Jonas Wolff SEI-Tagung HZDR, 16.04.2018

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

DESY. | FPGA basierte Testbench für 10Gbit Daten-Module des ATLAS Trackers | Wolff Jonas, 16.4.2018

End-of-Substructure Platine

Verschiede Versionen der EoS-Platine GBTx & GBT-SCA / LpGBT

Während der Entwicklung wird es verschieden Versionen der EoS-Platine geben, weil der GBT-Chip vom CERN immer weiter entwickelt wird.

2016/17 →GBTx + GBT-SCA 2018/19 →2 x LpGBT Am Ende werden zwölf verschiedene Platinenvarianten im ATLAS-Experiment verbaut sein, je nach Lage und Einbauort.

Drei verschiedene Einbauorte mit je Master und Slave Board jeweils eine Spiegelversion

ELINK • Der C Fehle • Im Uf • Im Do • Die T • G0-G	 End-of-Substructure Platine ELINK und optischer Frame Der GBT-Chip besitzt verschiedene Frame-Modi, FEC mit und Wide Frame ohne Fehlerkorrektur (FEC 80Bit / Wide Bus 112Bit Nutzdaten) Im Uplink wird der Wide Bus benutzt, wegen der höheren Nutzdaten Im Downlink kann nur der FEC benutzt werden Die Taktrate der Frames liegt bei 40MHz (synchron zur LHC/ATLAS Masterclock) G0-G6 sind Gruppen in denen die Daten der ELINKS liegen In nach Geschwindickeit sind es die Daten von 								
	2 Elinks mit je 8 Bit \rightarrow 320MB/s oder 4 Elinks mit ie 4 Bit \rightarrow 160MB/s								
Wide Fram	Beispiel Gruppe G2, Frame Bit 64 bis 79 160MB/s →ELINK 16,18,20,22 mit je 4 Bit 320MB/s →ELINK 16,20 mit je 8 Bit								
Header	IC	EC	G4	G3	G2	G1	G0	G6/FEC	G5/FEC
4 Bit	2 Bit	2 Bit	16 Bit	16 Bit	16 Bit	16 Bit	16 Bit	16 Bit	16 Bit
IC: Ste EC: Ste	IC: Steuerung GBT-SCA (GPIO,DAC; ADC, I ² C) EC: Steuerung GBTx (ELINKS)								
DESY. FPGA	DESY, FPGA basierte Testbench für 10Gbit Daten-Module des ATLAS Trackers Wolff Jonas, 16.4.2018					Seite 8			

Vielen Dank

Kontakt

DESY. Deutsches Elektronen-Synchrotron

Jonas Wolff FEA Jonas.Philipp.Wolff@desy.de 040 8998-2585

www.desy.de

47

	Direct Sampling FMC for High-Speed Data Acquisition			
Leiterplattenentwurf	Johannes Zink, 16.04.2018, Hamburg S. 7			
 16 Lagen PCB (1.85mm) mit Blind-, Buried- und Stacked- Vias (0.1mm Bohrdurchmesser), 6 GND-Lagen Impedanz-kontrollierte Leitungen 50R Single Ended (CP), 100R Differential (Edge, CP) 	R165 N			
109. SEI Tagung, HZDR 2018	TECHNOLOGY LAB			

	Direct Sampling FMC for High-Speed Data Acquisition
Leiterplattenentwurf - vlas	Johannes Zink, 16.04.2018, Hamburg S. 9
	Problem: Welche Bohrpaare für Routing?
	 alle Vias müssen am Ende auf 6 Bohrpaare abgebildet werden
	 WICHTIG: Via-Pads müssen auf den Stacked-Ziellagen auftauchen
	T T
	L L
109. SEI Tagung, HZDR 2018	TECHNOLOGY LAB

		Direct Sampling FMC for High-Speed Data Acquisition		
Leiterplattenentwurf - Vias		Johannes Zinl	k, 16.04.2018, Hamburg	S. 10
	 Lösung: "vi für Routing Altium Skri analysiert u realle (fertig realisierbar IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	rtuelle" Bohrpa ! pt: alle Vias we und virt. Vias w gungstechnisch e) Bohrpaare a Debrpaare a eller könnte die Arbeit und Zeit urbeitet werden n im Quell-Des eld → Fertigung	erden erden auf h abgebildet Pads auch t, da nur in kann sign sparen g stark	
109. SEI Tagung, HZDR 2018			HELMHOLTZ	DESY

109. SEI Tagung, HZDR 2018

TECHNOLOGY LAB

DESY

A much dum a Des shi surin andia masa	Direct Sampling FMC for High-Speed Data Acquisition				
Anwendung Beschleunigerdlagnose	Johannes Zink, 16.04.2018, Hamburg S. 16				
Fektronenpaket, Flug durch Cavity , H.Padamse	 High-Order Modes Elektronenstrahl regt HOM in Cavity an Signale vom HOM-Koppler enthalten Informationen über: Strahllage Strahlladung (Strahlstrom) Ausrichtung der Cavities "Electronics for High-Order Modes Detection", Uros Mavric et al. Klystron Lifetime Management Erkennen von gefährlichen Klystron- zuständen: 				
Contraction of the second seco	 Lichtbogen im Elektronen-Injektor Strahlverlust HF-Signalverlust 				
geschmolzenes Klystron nach Lichtbogen, TV-Sender	 → sehr schnelles Abschalten erforderlich Model Based Fast Protection System For High Power RF Tube Amplifiers Used At European XFEL Accelerator, Lukasz Butkowski 				
109. SEI Tagung, HZDR 2018	TECHNOLOGY LAB				

	Direct Sampling FMC for High-Speed Data Acquisition			quisition
	Jc	ohannes Zink,	16.04.2018, Hamburg	S. 18
Danke für Ihre Aufmerksamkeit				
	m1676	Tco		
109. SEI Tagung, HZDR 2018	TECHNOLO	GY LAB	GEMEINSCHAFT	DESY.

SEI-Tagung, Frühjahr 2018, HZDR Dresden Rossendorf

Г

WLSF-Szintillationsdete	ektor		
Jülich-Münchener Stan	dard		
	uaru		
Implementierung des D	etektorservers		
Kalibrierung des Detekt	tors		
Zusammenfassung und	Ausblick		
Mitglied der Helmholtz-Gemeinschaft	16. April 2018	Folie 2	JÜLIC Forschungszentr
 Realisierung von F Experimente 	lard- und Softwareld	ösungen für wisse	enschaftliche
 Unterstützung durch ⇒ u.a. Entwicklun Neutronenstreu Aufgabenstellung: 	ch andere Jülicher I ng von Detektorsyste uinstrumenten des JCI	nstitute men zur Nutzung be NS	9i

_

- Anschluss eines Rechners über PCI-Schnittstelle
- Central Clock über Twisted-Pair zur zentralen Signalverteilung

16. April 2018	Folie 5	
	16. April 2018	16. April 2018 Folie 5

IMPLEMENTIERUNG DES DETEKTORSERVERS

Softwarestruktur (2)

Mitalied der Helmholtz-Gemeinschaft

2 Threadklassen

- Idee von PlxDeviceThread: Modularisierung, einfacher Datenaustausch, Existenz nur bei Notwendigkeit
- DaqThread: Auslese und Verarbeitung der Rohdaten
- SaveDataThread: kontinuierliches Sichern der Rohdaten, nach Messende auch 1D- und 2D-Daten
- UpdateThread: Überwachen der Bedingung zum Beenden einer Messung

16. April 2018

INHALTSVERZEICHNIS

Einleitung

WLSF-Szintillationsdetektor

Jülich-Münchener Standard

Implementierung des Detektorservers

Kalibrierung des Detektors

Zusammenfassung und Ausblick

Folie 15

KALIBRIERUNG DES DETEKTORS

Einstellung der Diskriminatorschwelle – Erste Näherung

Einstellung der Vorverstärkung – Vorgehen

- - Angleichung der Pulshöhenspektren, sodass Maxima in demselben Spannungsbereich liegen
 - ⇒ Gleiche Auswirkung der Schwelle auf jedem Kanal
 - Überlegungen:
 - Bildung von Mittelwert und relativer Abweichung
 - Berechnung des Einflusses von Vorverstärkung auf erfasste Spannung
 - Anpassung der Vorverstärkung mithilfe der relativen Abweichung
 - Kontrollwerte: durchschnittliche und maximale, relative Abweichung

• Ansatz: Aktuelle Vorverstärkung entspricht gewünschter Vorverstärkung unter Hinzunahme der relativen Abweichung

$$\Rightarrow gain(c) = gain'(c) + f(c) \cdot gain'(c)$$

ZUSAMMENF	ASSUNG L	IND AUSBI	-ICK
Ergebnisse			
 Entwicklung einer Detektors 	vielseitig einsetzb	aren Schnittstelle	zur Steuerung des
2 Implementierung e	eines TANGO-Ser	vers unter Berücks	sichtigung des
3 Entwicklung eines	automatisierten K	alibrierungsalgo	rithmus
Weitere mögliche F	Projekte		
Implementierung	des TOF-Modus		
2 Performanceunte	ersuchungen		
Mitglied der Helmholtz-Gemeinschaft	16. April 2018	Folie 20	JÜLICH Forschungszentrum
Vie A	len Dar ufmerk	nk für Ih samkeit	ire !

EXPERIMENTSYSTEM SAPHIR

- <u>Six Anvil Press for High Pressure Radiography</u> and Diffraction
- Flugzeitneutronenbeugung (TOF) und Neutronenradiographie an polykristallinen und flüssigen Proben unter extremen Druck- und Temperaturbedingungen
- Nutzung thermischer Neutronen
- Herzstück: Sechsstempelpresse mit Presskraft von bis zu 23.5 MN
- Beugungs- und Radiographiedetektoren

Folie 1

16. April 2018

18

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>

i enterbenandiung	KTORSERVER	
Fehlercodes in unt	terer Programmierebene	
Ausnahmen in Sch	nittstellen zu TANGO	
Vier Logging-Modi	:Error, Warning, Info, Debug	
Tango warning @ 09.08.201Error reason = [MAROC 2]Device [0] : RegisterOrigin : PLX_STATU	<pre>L7 13:59:29.705066 Error while comparing written and read serial data array [0x0] changed: WR 0x511F45F3 -> RD 0x510EC5F3 JS MAROC_ns::Maroc::_compareWRRegisterArrayWithLink(U32,</pre>	ys bool)
Tango error @ 09.08.2017 14 Exception catched in MAROCO Error reason Result Origin	<pre>4:18:53.514733 Detector : [Worker] Error while trying to start data acquisi</pre>	isiton art()
Mitglied der Helmholtz-Gemeinschaft	16. April 2018 Folie 3	ÜLICH schungszentrum
TANGO-DETE Konfigurationsdateien	KTORSERVER	
 Größtenteils unver 	änderliche Parameter	
 Größtenteils unver Koinzidenzpara MAROC3-Konfi Separate Schni 	änderliche Parameter ameter der Konzentratoren iguration ittstellen nicht sinnvoll	
 Größtenteils unver Koinzidenzpara MAROC3-Konfi ⇒ Separate Schni Lösung: INI-Date 	ränderliche Parameter ameter der Konzentratoren iguration ittstellen nicht sinnvoll eien für alle Platinen	
 Größtenteils unver Koinzidenzpara MAROC3-Konfi ⇒ Separate Schni Lösung: INI-Date INI-Format: Se LoadSettings() (ränderliche Parameter ameter der Konzentratoren iguration ittstellen nicht sinnvoll eien für alle Platinen ektionen und Schlüssel-Wert-Paare und SaveSettings() als TANGO-Kommandos	
 Größtenteils unver Koinzidenzpara MAROC3-Konfi ⇒ Separate Schni Lösung: INI-Date INI-Format: Se LoadSettings() t 	ränderliche Parameter ameter der Konzentratoren iguration ittstellen nicht sinnvoll eien für alle Platinen ektionen und Schlüssel-Wert-Paare und SaveSettings() als TANGO-Kommandos	

KALIBRIERUNG DES DETEKTORS

Einstellung der Diskriminatorschwelle – Derzeitiges Optimum

- Setzen der Schwelle auf 0, 2-Quantil nicht möglich
- Vermutung: Verzögerungszeit im FPGA bei hoher Schwelle zu kurz
- Alternative: Erhöhen der Schwelle solange sinnvolle Daten ausgelesen werden
- Prüfung aller Kanäle mit ermittelter Schwelle

16. April 2018

Folie 6

KALIBRIERUNG DES DETEKTORS

Einstellung der Vorverstärkung – Ergebnisse

Iteration	Gemessene Impulse pro Kanal	Standard- abweichung	Ø relative Abweichung	betragsmäßig größte, relative Abweichung
1	1000	199	4.96 %	33.9 %
2	2000	184	4.49 %	19.4 %
3	3000	158	3.86 %	23.8 %
4	4000	150	3.66 %	21.7 %
5	5000	142	3.47 %	20.4 %

KALIBRIERUNG DES DETEKTORS

16. April 2018

Einstellung der Hochspannung

Mitglied der Helmholtz-Gemeinschaft

- Verfahren identisch zur Vorverstärkung
- Unterschiede: Berechnung von neuem Skalierungsfaktor, anderer Wertebereich
- Problem: Änderung der Hochspannung anscheinend nicht korrekt in Elektronik umgesetzt
 - \Rightarrow Tests lediglich mit zwei Platinen möglich
- Ergebnis: Differenz zwischen Maxima der Pulshöhenspektren bereits sehr gering (unter 2.5 %)
 - ⇒ Bei derzeitigem Entwicklungsstand keine weiteren Tests zur Verbesserung der Hochspannung möglich

Folie 8

Folie 7

Angleichung der Nachweiswahrscheinlichkeit – Überlegungen

- Motivation: Ausgleich der Schwankungen in den Photokathoden der MaPMTs bezüglich der Nachweiswahrscheinlichkeit eines Photons
 - Unterschiedliche Sensitivität der Photokathoden
 - ⇒ Unterschiedliche Emissionswahrscheinlichkeit für ein Elektron pro Photon

Idee:

Mitglied der Helmholtz-Gemeinschaft

- Vermessen aller MaPMT-Kanäle mit speziell gepulster LED
- Vergleich der detektierten Impulse pro Kanal

16. April 2018

```
h(m,c) \cdot f(m,c) \stackrel{!}{=} \frac{1}{M \cdot 64}\iff f(m,c) = \frac{1}{h(m,c) \cdot M \cdot 64}
```

$$\operatorname{mit} h(m,c) = \frac{counts(m,c)}{\sum\limits_{i=1}^{M} \sum\limits_{j=1}^{64} counts(i,j)}$$

Folie 9

M: Anzahl vorhandener MaPMTs

- h(m,c) : Anteil detektierter Photonen
- $f(\boldsymbol{m},\boldsymbol{c}):$ Faktor zur Anpassung von $h(\boldsymbol{m},\boldsymbol{c})$

JÜLICH

Interdisz	iplinäre Dokumentenv	vielfalt	
ELEKTRO- TECHNIK	Schaltplan Schaltungssimulation PCB-Layout CAM-Daten Stückliste FPI AN	3D-Modell (CAD) Technische Zeichnungen FEM-Simulationen CAM-Daten Materiallisten	MECHANIK KONSTRUK- TION
PROJEKT- PLANUNG	Angebote Lieferscheine Planungsunterlagen Blockbilder	Bedienungsanleitung Betriebsanleitung Risikobeurteilung Konformitätserklärung Prüfungsunterlagen	DOKUMEN- TATION
SOFTWARE FIRMWARE	Quellcode Bibliotheken	Konfigurationsdateien SPS-Code Visualisierungsbilder	AUTOMATI- SIERUNG
"Alles, was zum Nachbau gebraucht wird!"			

Bedienc	berfläche -	· Uberblick	
	PT PTT (Rev: 6292) - Produkt AAA00	001.001*	3
Produkt- nummer -{ Letzte -{ Änderung	Program groat georates Pedal Description of the Description of the Description PMF4TNammer: AAA00001.001 Lettle Anderung: Meyer, Markus 03.08.2017 17:38 Uhr	mn / mation flektretechnik () Heckanik () Software () Automatisierung () Docman () Recencies Produkterformationen Teter ** Ausoperatinger Tiel des Induktes Condruct ** News, Maka Erstelungelstum ** (13.0.1.2012	
Kategorien	Aktive Kategorien: C Alig. Informationen ? C Bekrotechnik C Mechanik C D Schware 2 D	Nepát * Pré-Selem • Conclusion de la conclusion de la	Allgemeine ≻ Produkt-
	Automatsierung O Kategorie hinzufügen	erren * 001 Otsersonrefald Vessonrefald Vess	angaben
	C Docman O	Total Control	
Haupt- funktionen	Produkt Speichern	Buddf 151-88 07.03. 2012 m 16:371/m Meyer, Mexics Inter- inter- inter- section pt_compatibility_soldet.optic 215-88 00.02.205 km 12:29 km Meyer, Mexics Inter- inter- section Inter- inter- section Inter- inter- section Inter- inter- section Inter- inter- section Inter- inter- section Inter- inter- inter- inter- section Inter- inter- inter- inter- section Inter- inter- inter- inter- section Inter- inte	Freigebbare ← Dateien in der Datenbank
	PIT-Nummer drucken	State PT-Numer Produtted Product Project Koordnear	Produkt-
	Beenden	Sie konnen Referenzen zu anderen Produkten über das ¹ 4 ⁿ Innzufügen.	
Seite 12		M. Mever Zentralabteilung Forschungstechnik A	Mitglied der Helmholtz-Gemeinschaft Abteilung Instrumentierung 1 www.hzdr.d

Peatureupdate: Threading und FWFM-Archivanbindung Peatureupdate: Threading und FWFM-Archivanbindung 19 Tiklets (1 geschlossen – 18 offen) Zugehörige Tickets Peature #249; Produktsuche bei mehreren Versionen eines Produktes Feature #249; Automatische Link-Prufung Peature #660; Dateioperationen für große Dateien in Threads Feature #107; Durchgängiger Thread-Support Feature #1632; Integration des Produktstadiums Feature #1600; Durchgängige Verwendung des Loon-Themes Feature #1600; Durchgängige Verwendung des Loon-Themes Feature #1600; Support für Drag&Drop Operationen Feature #1600; Support für Drag&Drop Operationen Feature #1600; Support für Drag&Drop Operationen Feature #1600; Support für Schlider mit Angabe des Produkttels Feature #1800; Undragen für Schlider mit Angabe des Produkttels Feature #1800; Svehinderung für Vehindungen zu: Orndenu auf lokalen Laufwerken oder Feature #2309; Neues Kategorie: Sichenheitsbetrachtung	 Automatische Prüfung der Pfadangaben auf Erreichbarkeit Integration des CAD-Archivs der mechanischen Konstruktions- abteilung (ca. 1000 Datensätze mit insg. ca. 800 GB) Performanceerhöhung Drag & Drop Anbindung der DB mit Oracle C++ Call Interface (OCCI) über den Webserver
Feature #2481: Übertragen eines Angabeblocks innerhalb der Kategorie zu einem ander Feature #2492: Stückliste als Baumstruktur und Bearbeitung durch Verschieben 20.0.0 Neues Interface zur Datenbank	Niemals die Kernfunktion aus den Augen verlieren.
1 Ticket (0 geschlossen – 1 offen)	Keine Überfrachtung!
zugenonge Tickets	•

MicroTCA Technology Lab -A Helmholtz Innovation Lab at DESY.

DESY. MSK Maschine Strahlkontrollen

Einsatz von PROFINET in der Neutronenstreuung

18.04.18 | Harald Kleines, JCNS-2

Jülich Centre for Neutron Science

- Forschungszentrum Jülich
 - Interdisziplinäres Forschungszentrum, ca. 5800 Mitarbeiter
 - Forschungsreaktor FRJ-2 wurde 2006 abgeschaltet
- ⇒Gründung des JCNS in 2006
 - Zentrale: JCNS-1, JCNS-2, (JCNS-3) in Jülich
 - Außenstelle am MLZ in Garching: 11 Instruments am FRM-2
 - Außenstelle am ILL in Grenoble: 3 Instrumente in Kooperation mit CEA
 - Außenstelle am ORNL in Oak Ridge: 1 Instrument an der SNS
 - Zukünftige Aktivitäten: ESS (3+ Instrumente) + High Brilliance Source

Neutronenleiterhalle am FRM-II

PROFIBUS DP (in den 90er Jahren)

- Kommunikationsmodell: Producer/Consumer-Modell
 Ideal geeignet f
 ür den zyklischen Ablauf in SPSen
- Standardisierte Gerätediagnose + standardisierte Geräte- und Kanalkonfiguration (GSD-Dateien) + Echtzeifähigkeit
 - Ideal geeignet f
 ür die Kommunikation mit Automatisierungsger
 äten
- Weltweit am meisten verbreiteter Feldbus und natürlicher Kommunikationsmechanismus bei Automatisierungsgeräten der Firma Siemens
 - ⇒ Arbeitspferd im JCNS für die Kommunikation mit dem Leitrechner und mit der dezentralen Peripherie
 - ⇒ Mitte der 90er Jahre Entwicklung eines eigenen Kommunikationskontrollers für CPCI mit Linux-Support
- Heute Vielzahl von Alternativen verfügbar
 - Hilscher, HMS, Kunbus, Softing,.....

PROFINET IO System Modell

- Konzipiert f
 ür Szenarien mit Dezentraler Peripherie und zyklischem Datenaustausch
- Eng an Modell und Arbeitsweise von PROFIBUS DP angelehnt
- 3 Typen von Stationen (Master/Slave Szenario):
 - IO Controller: intelligentes Automatisierungsgerät (SPS,...)
 - IO Device: unterlagertes Feldgerät
 - IO Supervisor: Engineering Station

JÜLICH

JÜLICH

Performance Optimierungen ab Version 2.3

- Fast Forwarding
 - Optimiertes Weitersenden eines Frames während des Empfangs
- **Dynamic Frame Packaging**
 - Übertragung aller Eingangs/Ausgangsdaten mehrerer Devices in einem Frame
- Fragmentation
 - Senden/Empfangen von maximalen Standard Ethernet Frames benötigt >100 µs => Zerlegung in kleinere Segmente
- Insgesamt: Zykluszeiten von 31,25µs sind erreichbar

Integration in die Host-Software

- Parametrierung und Initialisierung
 - Bisher tools dpconfig + pbd
 - Jetzt: Step7 + automatisch bei profi_open()
- Produktiv-Dienste in TANGO-Servern
 - profi_open(), profi_close(), profi_set_data(), profi_get_data()
 - Kleine Interface-Bibliothek zu IO-Base => alle Tango-Server ungeändert
- Diagnose und Test
 - Bisher Tool dpdialog
 - Jetzt Step7, Web-Server auf CP1604 + Tool qango für TANGO-Server
 - Evtl. noch Tango-unabhängiges Tool entwickeln

JÜLICH

JÜLICH

Status

- Komplett umgestellt: ANTARES (TU München), Host: BoxPC IPC427
- Teilweise zwischen SPSen und dezentraler Peripherie: DNS, KWS, HEIDI,...
- Komplettumstellung mit CP1604: NSE im Sommer
- Insgesamt: Inkrementeller Übergang von PROFIBUS DP zu PROFINET IO bei den JCNS-Instrumenten
- Teilweise Koexistenz
- Bisher keinerlei Probleme
- Sehr niedriger Aufwand
- Grundsätzlich: Verwendung von spezifizierten Kabeln und Steckern im Instrument (Im Lab: Standard Cat5 Kabel)
- Wichtiger Vorteil in der Praxis: Größere IO-Daten-Bereiche

EtherCAT Feldbusknoten

- Motivation @ HZDR
- Systemstruktur, Zusammenwirken von Master-Slave
- Wichtige Mechanismen im Feldbusknoten
- Entwicklungswerkzeuge und ihre Grenzen
- Schrittmotoransteuerung
- Synchronmotoransteuerung

EtherCAT Feldbusknoten Motivation @ HZDR Systemstruktur, Zusammenwirken von Master-Slave Wichtige Mechanismen im Feldbusknoten Entwicklungswerkzeuge und ihre Grenzen Schrittmotoransteuerung Synchronmotoransteuerung

EtherCAT EtherCAT Feldbus Ethernet Frames nach 802.3 mit Ethertype 0x88A4 durchlaufen den logischen Ring Master gliedert das Prozessabbild der Anlage in Datagramme Lokale Prozessabbilder der Slaves werden im Durchlauf aktualisiert Slaves implementieren Datenabgleich, Sicherungsmechanismen und fungieren als Switch VKC HDR Data 1 Data 2 Datagramm n Datagramm 1 Datagramm 2 mehrere Datagramme pro (maximal 15) Teilprozessabbild möglich Datengröße von 46 bis max.1500 Byte Datengröße von 64 bis max.1518 Byte Master Verkabelung EtherCAT Frame-Verlauf

EtherCAT Feldbusknoten

- Motivation @ HZDR
- Systemstruktur, Zusammenwirken von Master-Slave
- Wichtige Mechanismen im Feldbusknoten
- Entwicklungswerkzeuge und ihre Grenzen
- Schrittmotoransteuerung
- Synchronmotoransteuerung

IPSBE: Interatives Pipeline-System für Bildverarbeitung in Echtzeit

Dipl.-Inform. Stefan König*, Prof. Dr.-Ing. habil. Wolfgang Oertel[†], Prof. Dr.-Ing. Peter Kaever[‡] Professur für Computergrafik, HTWD, Friedrich-List-Platz 1, 01069 Dresden*[†] HZDR, Bautzner Landstraße 400, 01328 Dresden[‡] * skoenig@informatik.htw-dresden.de; † oertel@informatik.htw-dresden.de; ‡ p.kaever@hzdr.de

Zusammenfassung-Das Konzept und der Stand der prototypischen Umsetzung eines Pipelinesystems wird vorgestellt. Es erlaubt dem Nutzer, Algorithmen und Parameter während der Laufzeit anzupassen und in Echtzeit zu erproben. Bei den anvisierten Zielanwendungen fallen große Datenmengen in kurzer Zeit an, sodass die Verarbeitung parallelisiert und effizient unter Nutzung von CPU- und GPU-Ressourcen ablaufen muss.

I. MOTIVATION

Für die Bildverarbeitung stehen für die gleiche Zielstellung oft mehrere Algorithmen zur Verfügung, die wiederum mehrere Parameter haben können (Abb. 1). Hierbei stehen oft Geschwindigkeit (Durchsatz, Verzögerungszeit) und benötigte Rechenressourcen in Konflikt mit Genauigkeit und Robustheit der Ergebnisse. Es gilt herauszufinden, welche Verfahren in welcher Kombination für die konkrete Anwendung die besten Ergebnisse liefern, und dann die optimalen Wertebereiche der Parameter zu finden.

Abbildung 1. Bild von geschreddertem Elektronikschrott (links), nach Canny-Kantendetektor mit kernelsize = 5, threshold = 500 (mitte) und nach Sobel-Kantendetektor mit kernelsize = 5, dx = 1, dy = 1(rechts).

A. Zielstellung

Das Ziel der interaktiven Bildverarbeitungspipeline (Abb. 2) ist es, Aufwände und Wartezeiten zu reduzieren, die bei der klassischen Anwendungsentwicklung entstehen. Statt ein Programm mehrfach anzupassen, zu kompilieren und neu zu starten, sollen Algorithmen einfach ausgewählt und Parameter eingestellt werden können. Zudem soll die Bedienung eines solchen Systems intuitiv auch normalen Anwendern möglich sein, um diese in den Entwicklungsprozess einzubeziehen. Zwar wird weiterhin eine Kenntnis über die Funktionsweise der Bildverarbeitungsverfahren nötig sein, doch kann eine Zusammenarbeit von Entwickler und Anwender so

viel direkter ablaufen. Zudem wird es dem Anwender ermöglicht, später selbstständig Anpassungen vorzunehmen.

Abbildung 2. Screenshot der Benutzeroberfläche mit Flow Chart (links), Algorithmenbibliothek (rechts oben) und Parametersteuerung für die selektierte Pipelinestufe (rechts unten)

B. Anwendungskontext

Dieses Software Framework entsteht im Rahmen des Projektes ASARBWG [5], in dem ein System zur Bildverarbeitung für wissenschaftlich-technische Großanlagen entwickelt werden soll, welches möglichst effizient und dabei gleichzeitig modular und flexibel ist.

Im Fokus stehen zwei Anlagen unserer Kooperationspartner: Eine Anwendung ist die Super-SIMS, bei der Proben mit einem Primärionenstrahl beschossen werden, um die untersuchten Objekte schichtweise abzutragen. Diese so herausgelösten Sekundärionen werden danach mit einem 6-MV-Tandembeschleuniger und weiterer Peripherie nach ihrer Ordnungszahl, Geschwindigkeit, Masse und Ladung separiert und gezählt [2].

Die zweite Anwendung ist ein im Aufbau befindlicher Prototyp für Elektronikschrottaufbereitung. Bei dieser Anlage werden zerschredderte Teile von Elektrogeräten mit Hilfe eines Förderbandes an Sensoren entlang transportiert (siehe auch Abb. 1 (links)). Als Sensorik sind im ersten Schritt mehrere 2D-Kameras (klassische Objekterkennung), eine Hyperspektralkamera (Materialerkennung) und ein Laserscanner (Höhenprofil) geplant. Damit sollen die auf dem Band befindlichen Teile erkannt und Rückschlüsse auf die enthaltenen Rohstoffmengen sowie deren optimale Verwertung gezogen werden. Dazu müssen Datenflüsse im Gigabitbereich in Echtzeit ausgewertet werden.

In beiden Anwendungen werden reale Objekte untersucht,

um die Menge und Position von chemischen Elementen mit variabler Präzision und Genauigkeit zu ermitteln.

Als Randbedingung ergibt sich, dass die Software der Anlagen unter Linux lauffähig sein sollen. Die Entwickler und Nutzer sollen die Software aber auch unter Windows-Betriebssystemen nutzen können. Zudem ist die Unterstützung der Bibliothek OpenCV [4] für die Bildverarbeitung essentiell: Viele Forscher im Bereich Computergrafik entwickeln ihre Arbeit mit der Bibliothek OpenCV und machen ihre eigenen Entwicklungen darüber verfügbar. OpenCV unterstützt für viele Algorithmen GPU-Beschleunigung.

Es wurden bestehende Entwicklungen auf ihre Eignung für das Projekt untersucht. Ein vielversprechender Kandidat ist das UFO-Framework [3]. Es ist sehr effizient und unterstützt durch seinen modularen Aufbau (erweiterbar über Plugins) grundsätzlich auch die Einbindung von OpenCV. Aufgrund von weiteren Bibliotheksabhängigkeiten ist UFO aber leider nicht unter Windows lauffähig. Auch die interaktive Änderung der Verarbeitungspipeline war zum Zeitpunkt der Evaluation nicht vorgesehen.

In den folgenden Abschnitten geht es um den Aufbau und die Funktionsweise des aktuellen Ansatzes sowie den derzeitigen Stand der Umsetzung. Es folgt eine kritische Betrachtung der Ergebnisse und schließlich eine Zusammenfassung mit Ausblick auf die geplante Weiterentwicklung.

II. AUFBAU UND FUNKTIONSWEISE

Dieser Abschnitt erklärt die Funktionsweise des gewählten Ansatzes ein. Es wird zuerst die Struktur einer einzelnen Pipelinestufe vorgestellt. Danach geht es um das Zusammenspiel der Pipelinestufen als Gesamtsystem und die Anbindung der Benutzeroberfläche.

A. Pipelinestufen

Die Struktur einer Pipelinestufe zeigt Abb. 3. Jede Pipelinestufe kann mehrere Eingangswarteschlangen haben, in denen typisierte Datenblöcke (z. B. Bilder) bis zu ihrer Verarbeitung zwischengespeichert werden. Für jede Stufe wird ein eigenständiger Thread gestartet, der den Verarbeitungsalgorithmus ausführt, sobald an allen Eingangswarteschlangen die notwendigen Daten vorliegen. Bis dahin wird der Thread schlafen gelegt, ohne CPU-Ressourcen zu verbrauchen. Das Ergebnis der Berechnungen wird anschließend an die Warteschlangen der an die jeweiligen Ausgänge angeschlossenen Pipelinestufen weitergeleitet und falls notwendig dupliziert. Dadurch, dass alle Pipelinestufen als eigener Thread laufen, kann die Rechenleistung von Multi-Core-CPUs ausgenutzt werden. Es ist möglich, dass eine Pipelinestufe einen internen Zustand hält, um beispielsweise Statistiken wie Mittelwerte zu bilden oder auf sonstige Weise auf die zeitliche Abfolge von Daten zu reagieren. In der Regel hat jede Pipelinestufe Parameter, die die Arbeitsweise des Algorithmus beeinflussen. Diese können während der Laufzeit verändert werden.

Abbildung 3. Struktureller Aufbau einer Pipelinestufe

Ein Sonderfall sind die Eingabe- und Ausgabepipelinestufen, die jeweils nur Ausgangskanäle oder Eingangswarteschlangen haben. Eingangsstufen beziehen ihre Daten direkt von Hardware (z. B. Kameras) oder aus Dateien. Ausgangsstufen liefern ihre Daten direkt an Hardware (z. B. Ausgabe im Fenster) oder in Dateien (z. B. Videodateien).

B. Pipelinesystem und Web Interface

Einen Überblick zum Gesamtsystem gibt Abb. 4. Der Nutzer interagiert mit dem Web Interface, welches von der Anwendung bereitgestellt wird, und kann damit die Pipelinestruktur beeinflussen. Während der Laufzeit können neue Pipelinestufen erzeugt, die Verknüpfungen der Ausgabekanäle mit den Eingangswarteschlangen anderer Pipelinestufen verändert sowie die Parameter der Pipelinestufen angepasst werden. Es ist auch möglich, gleichzeitig mehrere Pipelinestufen mit dem gleichen Algorithmus anzulegen.

Abbildung 4. Überblick über das Gesamtsystem: (a) Nutzer interagiert mit dem Browser, der das Web Interface darstellt; (b) das Web Interface steuert die Pipeline und ruft dort aktuelle Information ab; (c) die Pipelinestufen verarbeiten Daten oder greifen auf Hardware und/oder das Dateisystem zu

Das Web Interface wird über einen integrierten HTTP Server zur Verfügung gestellt. Es basiert auf HTML5/CSS, Java-Script, jQuery [6] und dem Plugin jquery.flowchart [1]. Es ermöglicht dem Nutzer, die oben beschriebenen Aktionen auszuführen: also aus einer Bibliothek von verfügbaren Algorithmen zu wählen und entsprechende Pipelinestufen zu erstellen, deren Ein- und Ausgangskanäle miteinander zu verknüpfen und die Parameter einzustellen.

III. AKTUELLER ENTWICKLUNGSSTAND

Der Prototyp der Software ist unter Windows und Linux lauffähig und unterstützt bereits wichtige Bildverarbeitungsalgorithmen wie:

- Kantendetektoren (u. a. Canny, Sobel, HoughLines)
- Optischer Fluss
- HAAR-Cascade-Filter
- Farbraumkonvertierungen
- Maskenoperatoren (Threshold, UND-Verkünpfung)
- Morphologische Operatoren (Erosion, Dilatation)
- Bildgrößenanpassung (Resampling)

Außerdem besteht die Möglichkeit, Bilder und Videos in üblichen Dateiformaten (z. B: JPG, PNG, BMP, AVI) zu laden oder Live Videos von Kameras einzuspielen. Weitere Algorithmen aus der OpenCV-Bibliothek können innerhalb kürzester Zeit eingebunden werden.

Zusätzlich wurden Schnittstellen für anwendungsspezifische Dateiformate (Hyperspektralbilder im *.HDR Format und SIMS-Schichtenbilder im *.IM-Format) umgesetzt. Die Anbindung von Industriekameras, welche nicht über die integrierte Kameraschnittstelle angesprochen werden können, ist fast abgeschlossen.

Die GPU-Unterstützung von OpenCV wird durch die Nutzung des Datentyps cv::UMat ermöglicht. Der Datentyp ist in der derzeitigen Version von OpenCV (3.4.1) nicht thread safe. Dies führt dazu, dass Datenpakete weitergeleitet werden, bevor die Verarbeitung in der GPU abgeschlossen ist.

Durch die parallele Verarbeitung in verschiedenen Pipelinestufen kann es dazu kommen, dass Daten unterschiedlich schnell verarbeitet werden und damit Datenblöcke falsch miteinander kombiniert werden. Ein Mechanismus zur Synchronisation der Daten z. B. nach Zeitstempel oder Frame Index muss daher umgesetzt werden.

IV. BEWERTUNG DER ERGEBNISSE

Das Ziel einer Oberfläche zum Entwickeln von Bildverarbeitungspipelines wurde erreicht. Sie ist von normalen Anwendern verwendbar, um eigenständige Analysen durchzuführen. Auch wenn der Umfang der unterstützten Algorithmen noch sehr überschaubar ist, konnte gezeigt werden, dass die Struktur des Frameworks flexibel genug ist, um nicht nur Bilder, sondern auch Datenstrukturen wie Vektoren von Linien, zwischen den Pipelinestufen auszutauschen.

Dennoch muss der Fehler in der GPU-Beschleunigung behoben und die Synchronisation von Datenströmen ermöglicht werden. Auch wäre zu überlegen, ob ein Thread pro Datensatz besser wäre. Dann würde auch bei einfachen Pipelines eine Nutzung aller CPU-Cores erfolgen. Es besteht jedoch die Gefahr, dass viele Threads zu starten, die Effizienz der Verarbeitung merklich negativ beeinflussen könnte.

Für den Nutzer ist es außerdem wichtig zu erfahren, wieviel Zeit bzw. Ressourcen ein Algorithmus verbraucht. Es sollte daher eine Möglichkeit vorgesehen werden, die Verarbeitungsgeschwindigkeit zu erfassen und dem Nutzer entsprechende Statistiken auszugeben.

Ein Webinterface statt einer klassischen Anwendungsoberfläche zu verwenden, ermöglicht die schnelle Umsetzung komplexer Bedienelemente bei gleichzeitiger Platformunabhängigkeit und der Möglichkeit zur Fernwartung.

V. ZUSAMMENFASSUNG UND AUSBLICK

Es wurde ein interaktives Pipelinesystem vorgestellt, mit dem es möglich ist, Datenströme in Echtzeit zu verarbeiten und währenddessen die verwendeten Algorithmen und deren Parameter zu verändern. Zudem wurde der technische Aufbau dargelegt und dessen Vor- und Nachteile diskutiert. Durch den Einsatz eines Web Interfaces ist die Software nicht nur plattformunabhängig, sondern ermöglicht zusätzlich die Option der Fernwartung. Außerdem wurde auf den aktuellen Entwicklungsstand des Prototyps eingegangen. Es konnte gezeigt werden, dass das grundlegende Konzept auch in der Praxis funktioniert.

Die Fehlerbehebung bei der GPU-Unterstützung, die Synchronisation von Datenströmen sowie die Protokollierung und Visualisierung der Performance der Pipelinestufen sind wichtige Ziele der weiteren Arbeit.

VI. DANKSAGUNG

Diese Arbeit entstand im Rahmen des Projekts ASARB-WG, das mit Steuermitteln auf Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushalts mitfinanziert und in Kooperation mit dem Helmholtz-Zentrum Dresden-Rossendorf durchgeführt wird.

LITERATUR

- S. Drouyer. jquery.flowchart, JQuery UI plugin that allows you to draw a flow chart. http://sebastien.drouyer.com/jquery. flowchart-demo/, 2018.
- [2] Rugel, G. et al. Status report of Super-SIMS for resource technology. In *International Conference on Ion Beam Analysis IBA*, *Shanghai*, 2017.
- [3] Vogelgesang, M. et al. UFO: A Scalable GPU-based Image Processing Framework for On-line Monitoring. In Proceedings of The 14th IEEE Conference on High Performance Computing and Communication The 9th IEEE International Conference on Embedded Software and Systems (HPCC-ICESS), pages 824–829. IEEE Computer Society, Liverpool, UK, June 2012.
- [4] Kaehler, A.; Bradski, G. Learning OpenCV 3, Computer Vision in C++ with the OpenCV Library. O'Reilly Media, Sebastopol, 2016.

[5] Oertel, W.; Kaever, P.; König, S.; Pour, R.; Renno, A. D.; Rugel, G.; Ziegenrücker, R.; Zierer, R. Software Concept for Automated Synthesis and Analysis of Resource-Technological Image Data in Scientific Large-Scale Infrastructures. In *Ge-sellschaft zur Förderung angewandter Informatik (Hrsg.):* 20.

Anwendungsbezogener Workshop zur Erfassung, Modellierung, Verarbeitung und Auswertung von 3D-Daten (3D-NordOst 2107), Berlin, 2017.

[6] The jQuery Foundation. jQuery Core. https://jquery.org/, 2018.

Software and Hardware Support

- LabVIEW Current Gen (2017 SP1)
- LabVIEW Real-Time (2017)
- LabVIEW FPGA (2017 SP1) *optional if user only requires DAQmx support
- RIO (17.6)
- Includes DAQmx (17.6)
 - (new) Timing Engine per slot
 - (new) Hardware-Timed Single-Point on cRIO
 - (new) DAQ/FPGA Shared Trigger Bus

Upgrade Path for CompactRIO & CompactDAQ Customers

New Controller	Description	Migration From
cRIO-9040 (4 slot) cRIO-9045 (8 slot)	1.30 GHz Dual Core, 2GB RAM, 4GB Storage, Kintex-7 70T, 55C	CompactRIO: cRIO-9030, cRIO-9035 CompactDAQ: cDAQ-9132, cDAQ-9133
cRIO-9041 (4 slot) cRIO-9046 (8 slot)	1.30 GHz Dual Core, 2GB RAM, 4GB Storage, Kintex-7 70T, 70C	CompactRIO: cRIO-9065, cRIO-9031, cRIO-9068, cRIO-9036 CompactDAQ: cDAQ-9134, cDAQ-9135
cRIO-9042 (4 slot) cRIO-9047 (8 slot)	1.60 GHz Quad Core, 4 GB RAM, 4 GB Storage, Kintex- 7 70T, 70C	New variant, but may see migration from CompactRIO: cRIO-9034, cRIO-9039 CompactDAQ: cDAQ-9136, cDAQ-9137
cRIO-9043 (4 slot) cRIO-9048 (8 slot)	1.30 GHz Dual Core, 2 GB RAM, 8 GB Storage, Kintex-7 160T, 70C	CompactRIO: cRIO-9033, cRIO-9038, cRIO-9032 or cRIO-9037 (no WiFi variant planned) CompactDAQ: cDAQ-9134, cDAQ-9135
cRIO-9049 (8 slot)	1.60 GHz Quad Core, 4 GB RAM, 16 GB Storage, Kintex-7 325T, 256 MB FPGA DRAM, 55C	CompactRIO: cRIO-9034, cRIO-9039 CompactDAQ: cDAQ-9137
Future Variants	Lower performance/lower cost controllers Ethernet expansion chassis	cRIO-9063, cRIO-9064, cRIO-9066, cRIO-9067, Ethernet expansion

Timing Engines

- 8 generic input + 8 generic output engines available per chassis
 More flexibility than previous generation
- 4 counters available
- I hardware-timed task per module

Analog Input	310	8	1
Analog Output	1	8	1
Counter Input/Output	4, 2 ^[2]	4, 8 ^[3]	4, 1 ^[4]
Digital Input	1	8	1
Digital Output	1	8	1

.

NATIONAL INSTRUMENTS

FlexRIO with Integrated I/O

Xilinx Ultrascale FPGAs and High-performance I/O

- Integrated Mezzanine I/O modules
- Programmable with LabVIEW FPGA or Xilinx Vivado
- Synchronization with NI-TClk
- Driver for streaming and configuration
 - LabVIEW, C/C++
 - Dedicated FlexRIO Coprocessor Modules
 - 2 FlexRIO Digitizer Modules
 - Module Development Kit
 - More to come...

izdr

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

Tobias Frust + Dr. Guido Juckeland | Computational Science Group | www.hzdr.de/fwcc

https://gitlab.hzdr.d

Tobias Frust + Dr. Guido Juckeland | Computation

HZDR

Mapping Agile artifacts to GitLab features

Tobias Frust + Dr. Guido Juck

GitLab CI	Pipeline Jobs			
	Build	Test	Documentation	Deploy
Fully integrated with GitLab	O Developments O	FunctionObjects O	⊘ pages 0	O OpenFOAM-user O
Isolated test environment, based on Docker		HZDRreactingM Q		pages:deploy
How do I get started?		 ⊘ HZDRreactingT Q ⊘ cipsaMultiphas Q 		
Add a file called .gitlab-ci.vml in the root	of your reposit	orv		
, and a more regretate of ryant and root	or your reposit	Ory		
Define your jobs		ory		
Define your jobs Protect the master branch		ory.		
Define your jobs Protect the master branch Allow merge requests only to be merged if the p	ipeline succee	ods.		

Continuous integration using GitLab CI

Exemplary .gitlab-ci.yml file for C++ Hello-World:

Define a set of jobs in a YAML file Easily test your code against multiple versions of dependencies Detailed documentation at https://docs.gitlab.com/ce/ci/yaml/

Tobias Frust + Dr. Guido Juckeland | Computational Sc

P.Kaever, J.Burmester

Arbeitstreffen: FPGA basierte DAQ-Systeme

- **HZG**: Jörg Burmester stellt eine FPGA-basierte Auslese von Neutronendetektor-Signalen mit TDC vor. Weitere Projekte beinhalten eine Schrittmotoransteuerung, einen BISS/SSI-Umsetzer, einen Pic-Core für FPGA und verschiedene Kleinprojekte.
- HZDR: Bert Lange stellt verschiedene FPGA-basierte Geräte vor:
 - ein Beam-Position-Monitor mit Profinet-Schnittstelle
 - eine ADC/DAC-Karte (ADC 14 Bit, 105 MS/s; DAC 16 Bit) mit FMC-Schnittstelle
 - ein MicroTCA-RTM (4 ADC mit 16 Kanälen, 14 Bit, 32,5 MS/s)
- FZJ: Heinz Rongen informiert über "Gigabit serial Interfaces" in verschiedenen Projekten
 - Videostreaming über 1 Gb/s Ethernet
 - erste Schritte mit 10 Gb/s Ethernet
 - Arbeiten zur Hardwareanbindung mit JESD204B

KIT: Matthias Balzer berichtet über verschiedene Projekte

- die Nutzung von HGF-AMC-Boards in KATRIN, USCT und TRISTAN
- die Nutzung des HighFlex-Boards bei Kalypso und Kapture
- die Auslese metallischer Mikrocalorimeter
- den Entwurf eines FPGA-basierten CMS Track Triggers
- **DESY:** FPGA-Familien mit Entwicklungsumgebung mit Plattformen und Interfacetechnologien und Anwendungen werden vorgestellt.
- **GSI:** Karsten Koch informiert über TDC's auf verschiedenen Hardwareplattformen der GSI.Diese basieren auf ASICS oder FPGA's und werden beispielsweise im Rahmen der TRB-Plattform und des MBS DAQ Systems eingesetzt.

Holger Brand berichtet über Lösungen für den GEM Tracker mit CompactRIO und cRIO (FPGA).

DESY-PROC-2018-02 ISBN 978-3-945931-18-9 ISSN 1435-8077