

101. Tagung der Studiengruppe elektronische Instrumentierung im Herbst 2010

Karlsruhe (KIT), 27. September -29. September 2010

Editor: Peter Göttlicher (DESY) Verlag Deutsches Elektronen-Synchrotron

Impressum

101. Tagung der Studiengruppe elektronische Instrumentierung im Herbst 2010 27.-29. September 2010, Karlsruhe, Deutschland

Conference Homepage http://indico.desy.de/conferenceDisplay.py?confId=3335

Slides at http://indico.desy.de/conferenceDisplay.py?confId=3335

Online Proceedings auf http://www-library.desy.de/confprocs.html

The copyright is governed by the Creative Commons agreement, which allows for free use and distribution of the articls for non-commertial activity, as long as the title, the authors' names and the place of the original are referenced.

Editor: Peter Göttlicher Januar 2011 DESY-PROC-2011-01 ISBN 978-3-935702-51-5 ISSN 1435-8077

Published by Verlag Deutsches Elektronen-Synchrotron Notkestraße 85 22607 Hamburg Germany

Printed by Kopierzentrale Deutsches Elektronen-Synchrotron

101. Tagung der Studiengruppe elektronische Instrumentierung im Herbst 2010

SEI - Studiengruppe elektronische Instrumentierung der Helmholtz-Zentren Karlsruhe (KIT), 27.September - 29.September 2010

Inhaltsverzeichnis

Eröffnung und Ausblick	P.Göttlicher	2
Tagungsprogramm		3
Zusammenfassende Notizen	D. Notz	5
The DAQ System of the DSSC Detector of the European XFEL	T.Gerlach	7
μTCA for physics	K.Klockmann	14
Die Large Scale Data Facility des KIT	R.Stotzka	25
Hochleistungs-UV-LED-Module	M.Schneider	35
The ALICE Global Tracking Unit	F.Rettig	45
Zukünftige Pläne für das Experiment zur Suche nach Axionen	D.Notz	56

Peter Göttlicher DESY-FEB 27.September 2010

Eröffnung

Zur Tagung haben sich 38 Teilnehmer angemeldet.

Diese kamen aus den Helmholtz-Zentren GSI, DESY, KIT, HZB. FZJ und GKSS, sowie von der MPG, der Universität Heidelberg und des FZD, sowie von Firmen, die auch speziell für die Forschung entwickeln.

Es haben acht Vorträge aus den Forschungs-Instituten und acht von den Firmen stattgefunden. 11 Firmen haben ihre Entwicklugen präsentiert. Das Tagungsprogramm ist auf dem Internet einzusehen: http://indico.desy.de/conferenceDisplay.py?confId=3335

Im Rahmen des Tagung wurde die Bioliq Anlage am KIT besichtigt.

Ausblick

Die nächste Tagung findet vom vom 21.März bis 23.März 2011 an der GSI statt.

SEI: Herbsttagung 2010 am KIT Karlsruher Instituts für Technologie

chaired by Peter Göttlicher

from Monday 27 September 2010 at **09:00** to Wednesday 29 September 2010 at **14:20** (Europe/Berlin) at KIT, Campus Nord (Seminarraum im Institut für Nanotechnolgie (INT), Gebäude 640)

Description Tagung der Studiengruppe Elektronische Instrumentierung der Helmholtz-Zentren

Monday 27 September 2010

13:00 - 14:00	trierung Der Konferenztisch ist ab 13:00 besetzt 1h00'			
14:00 - 15:30	Vorträge I			
	Convener: Peter Göttlicher (DESY)			
	14:00 Begrüßung und Organisatorisches <i>15'</i> Speakers: Peter Göttlicher (DESY)			
	14:15 Was ist KIT? 20'			
	Speakers: Marc Weber (KIT Karlsruhe Institute of Technology)			
	14:45 TwinCAT: software-based automation 20'			
	TwinCAT: software-based automation— TwinCAT 3 – eXtended Automation– PC-based automation tec modern engineering concepts– support of different programming languages– new features in the runtir. application– conventional automation technology– Scientific Automation: measurement technology			
	Speakers: Dr. Josef Papenfort (Beckhoff Automation GmbH)			
	Material: agenda			
	15:15 SEI FPGA Workshop 10'			
	Speakers: Matthias Balzer (KIT IPE)			
15:30 - 16:00	Kaffeepause			
16:00 - 18:00	Vorträge II Convener: Peter Göttlicher (DESY)			
	16:00 The DAQ System of the DSSC Detector of the European XFEL (deutsch) 20' Speakers: Thomas Gerlach (Universität Heidelberg ZITI) Material: Slides			
	^{16:30} µTCA for physics 20'			
	Speakers: Vollrath Dirksen (N.A.T. GmbH)			
	Material: Minutes			
	17:00 Die Large Scale Data Facility des KIT 20' Speakers: Rainer Stotzka (KIT-IPE)			
	17:30 COTS Technology for High Energy Physics Instrumentation 20'			
	Speakers: N.N. (National Instruments GmbH)			
	Material: Paper 🔂			
19:00 - 22:00	Gemeinsames Abendessen Location: El Taquito mexikanische Restaurant (http://www.el-taquito.de)			
	0 1 0010			

Tuesday 28 September 2010

09:00 - 10:30

Vorträge III

Convener: Peter Göttlicher (DESY)

09:00 Hochleistungs-Multiachs-Motion-Controller heute - der POWER PMAC 20' Speakers: (MACCON Antriebskomponenten GmbH)

- 09:30 **Tackling the Limited Test access problem on Hi-density designs (in deutsch)** Speakers: Rob Staals (JTAG Technologies)
- 10:00 Arbeitstitel: High-Speed-Serial- Data Bus-Analyse 20' Speakers: Schmidt-Peltzer (Tektronix GmbH)
- 10:30 13:30 Firmenausstellungen
 - 10:30 Folgende Firmen haben sich angemeldet 3h00' (Unterbrochen von der Vortragssession IV)
 - 10:30 BECKHOFF Automation GmbH 3h00'
 - 10:30 ESD GmbH 3h00'
 - 10:30 JTAG Technologies 3h00'
 - 10:30 MACCON Antriebskomponenten GmbH, Delta Tau 3h00'
 - 10:30 National Instruments GmbH 3h00'
 - 10:30 powerBridge Computer 3h00'
 - 10:30 Schulz-Electronic GmbH 3h00'
 - 10:30 Struck Innovative Systeme Systeme GmbH 3h00'
 - 10:30 systerra computer GmbH 3h00'
 - 10:30 Tektronix GmbH 3h00'
 - 10:30 W-IE-NE-R, Plein & Baus GmbH 3h00'
- 10:30 11:30 Kaffeepause
- 11:30 12:30 Vorträge IV
 - Convener: Peter Göttlicher (DESY)
 - 11:30 Hochleistungs-UV-LED-Module 20'
 - Speakers: Marc Schneider (Karlsruher Institut für Technologie)
 - 11:50 Arbeitstitel: Stromversorgungen 20' Speakers: (W-IE-NE-R, Plein & Baus GmbH)
- 12:30 13:30 Mittagessen
- 14:30 18:00
 Besichtigung der bioliq Pilotanlage am KIT

 Convener:
 Matthias Balzer (KIT)

 14:30
 Treffpunkt ????? 1h30'
- 19:00 22:00
 Gemeinsames Abendessen

 Location:
 Vogel Bräu Karlsruhe (http://www.vogelbraeu.de/karlsruhe/2_1_1.html)

Wednesday 29 September 2010

09:00 - 10:05	Vorträge V Convener: Peter Göttlicher (DESY)			
	09:00 Radiation hard design in standard 0.25um SiGe:C BiCMOS technology 20' Speakers: Arif Hasan (advICo microelectronics GmbH)			
	09:30 The ALICE Global Tracking Unit 35' Speakers: Felix Rettig (Kirchhoff-Institut für Physik, Universität Heidelberg) Material: Slides			
10:10 - 10:40	Kaffeepause			
10:50 - 12:00	Vorträge VI Convener: Peter Göttlicher (DESY)			
	10:50 Zukünftige Pläne für das Experiment zur Suche nach Axionen 20' Speakers: Dieter Notz (DESY)			
	11:20 Embedded Development Kit; Softcore Microprozessoren; eigene Peripherie u Coprozessoren in FPGAs 20' Speakers: Jörn Plewka (GKSS-Forschungszentrum / Helmholtz Zentrum Geesthacht)			
	11:50 Zusammenfassung <i>10'</i> Speakers: peter goettlicher (DESY)			
12:00 - 13:00	Mittagessen			
13:00 - 13:01	Abreise			

4

Dieter Notz 2. 10. 2010

Gesprächsnotizen über die Herbsttagung der Studiengruppe Elektronische Instrumentierung am KIT Karlsruhe, 27. 9. - 29. 9. 2010

Für DESY von Interesse

P. Göttlicher hat von F. Wulf (HMI) die Leitung der Studiengruppe übernommen. *Boundary Scan* wird zur Überprüfung von Elektronik immer wichtiger. Bei Chips mit vielen Pins (z. B. mit Ball Grid Arrays) kommt man an die einzelnen Pins nicht mehr heran. Hier kann man Verbindungen zwischen Chips mit Boundary Scan überprüfen (IEEE 1149.1). Mit dem JTAG Bus kann man jeden Ein- oder Ausgang direkt ansprechen; vier Signale: TDI Data in, TDO Data out, TCK Clock, TMS Test Mode Select. Die meisten CPUs und FPGAs bieten Boundary Scan. Man kann auf diese Weise auch Memorys testen. Um Stecker an einer Platine zu testen, kann man ein Boundary scanfähiges I/O Modul bauen oder kaufen. Bausteine lassen sich auch in tri-state Mode schalten. Tools kann man umsonst herunterladen. Hilfsmittel stehen zur Verfügung. Man kann die Netzliste laden und in eine BSDL Boundary Scan Description Language einspeisen. Software arbeitet z. T. mit Python.

Am Ende der diesjährigen Herbsttagung fand ein *FPGA Workshop* statt. Der letzte Workshop wurde am 11. und 12. Mai 2010 am FZK mit 30 Teilnehmern und 13 Vorträgen durchgeführt. Verantwortlich für den Workshop sind Andreas Kugel, Matthias Balzer (KIT) und Peter Kämmerling (FZJ).

Die Komplexität nimmt zu. In der Automatisierungstechnik wachsen die Programmierwelten zusammen. Im Rahmen von TwinCAT3 kann man in C/C++, Matlab, Simulink und C#/Net programmieren. Es können die Compiler und Debugger von Microsoft Visual Studio benutzt werden. Bei TwinCAT3 liegt der Jitter unter 3 µs. In 2012 wird es Intel Chips mit 50 Cores geben. EtherCAT als Feldbus wird viel benutzt; Jitter um 50 µs. Bisher sind SPS Programme nicht Objekt orientiert (oo). Eine Erweiterung zu oo bietet IEC 61131.

Beim DSSC Detektor für den XFEL werden DEPFET Sensoren eingesetzt. (Lit.:J. Kemmer, G. Lutz 1985).

Bei μTCA können 6 unabhängige Transfers bei 12 Slots durchgeführt werden. Jeder Slot kann mit bis zu 80 Watt belastet werden; 60 W vorn, 20 W hinten. Die Gesamtleistung pro Crate liegt bei 1328 W. Auch die hinteren Karten können während des Betriebs gezogen werden.

Es gibt Pläne, eine *large scale data facility (LSDF)* zu bauen, die alle Daten der HGF für mindestens zehn Jahre aufnehmen soll. Die Datenmengen steigen: Ultraschall Brustkrebs Computer Tomograph 0.3 PB/Jahr, Synchrotronstrahlungsspeicherring ANKE 1 PB/Jahr. Wissenschaftler sollen interaktiv auf die Daten zugreifen können. Daten sind nicht statisch; sie bewegen sich hin und her. Hardwarefehler treten relativ häufig auf und erfordern Maintenance. Alles wird auf Metadaten abgebildet. Der *NI Kongress VIP 2010 – Virtuelle Instrumente in der Praxis* findet vom 27. – 28.

10. 2010 in Fürstenfeldbruck statt.

In einem Dual Core Prozessor kann ein Echtzeitprozess mit Linux über RT-Hypervisor synchronisiert werden.

Mit dem Übergang von parallelen zu seriellen Bussen nehmen die Bandbreiten zu. Über die Kabellänge verändern sich die Signale; Impedanzänderung über die Länge. Es werden Augendiagramme definiert. Treten Signale innerhalb des Auges auf, ist die Spezifikation nicht erfüllt. Jitter: Periodic Jitter, Data dependent Jitter, Duty Cycle Jitter, Random Jitter. LVDS kennt in der Spezifikation keine Augendiagramme. Um die Last auf Leitungen konstant zu halten, schickt man zusätzlich invertierte Bits: 1001 und 0110.

Von Wiener gibt es Powersupplies, die in Magnetfeldern und radioaktiven Umgebungen arbeiten (MARATON = Magnet-field + Radiaton tolerant New PS). Zum Teil mit Weicheisen abgeschirmt. FETs fielen bei radioaktiver Strahlung aus und erholten sich wieder. Immer zwei FETs hintereinander. PS zum Teil kompatibel mit Bausteinen von iSeg.

Sonstiges

Das ZEL am FZJ hat ab 1. 11. 2010 endlich einen neuen Institutsleiter. Das KIT bestehend aus FZK und Uni Karlsruhe wächst zusammen. Die interne Zusammenarbeit ist enorm erleichtert worden.

Multiachssteuerungen von Maccon und Delta-Tau können mit Matlab und Simulink programmiert werden. Über ein RT Linux Operating Environment erreicht man schnelle Zugriffe von bis zu 256 Achsen.

Es gibt Module mit *Hochleistungs-UV LEDs*. Diese kann man zu Aushärten von Lacken benutzen. Die hohen Temperaturen von über 100 Grad sind problematisch. Um besseren Wärmekontakt zu haben, benutzt man Flüssigmetall (Galliumlegierung) statt Kühlpaste. Wasserkühlung mit Mikrokanalkühler.

In der *BioLiq* Anlage wird Stroh zu einer Flüssigkeit verarbeitet, die weiter raffiniert werden kann. 500 kg Stroh/Stunde. Erhitzen auf über 500 Grad innerhalb von zwei Minuten durch Durchmischen mit heißem Sand in einer Doppelwendel.

Um weniger Strom auf Leitungen zu haben, bringt man DC-DC Converter dicht an den Verbraucher heran.

Alice am LHC benutzt 65564 ASICs am Detektor und 262256 custom made CPUs.

Web Adressen

FPGA Workshop: http://wiki.gsi.de/cgi-bin/view/SEI/SEI?topic=FPGA VIP 2010 in Fürstenfeldbruck: http://wiki.gsi.de/cgi-bin/view/SEI/SEI?topic=FPGA VIP 2010 in Fürstenfeldbruck: http://wiki.gsi.de/cgi-bin/view/SEI/SEI?topic=FPGA VIP 2010 in Fürstenfeldbruck: http://wiki.gsi.de/cgi-bin/view/SEI/SEI?topic=FPGA Boundary Scan: http://www.jtag.com

Termine

Nächstes Treffen der Studiengruppe: 21. – 23. 3. 2011 bei der GSI in Darmstadt. IEEE NSS MIC: 22. – 29. 10. 2011

ziti		Informatik V
	Outline	
 XFEL What is XFE How it work Experiments DSSC Overview DEPFET System layo DSSC FEE / DAQ Tasks and in System com Conclusion 	L? ss ut nplementation iponents	
1/5/2011	ZITI presentation by T. Gerlach	2 / 13

ziti			Informatik V
X	(FEL — Fa	acts & Figu	ires
	General]
	Total length	3.4 km	-
	Depth of tunnels	6 38 m	1
	Accelerator		1
	Total length	2.1 km	-
	Acceleration length	1.7 km	
	Energy	17.5 GeV	
	Temperature	-271 °C	
	X-ray Flashes		
	Flashes per second	27.000	
	Wavelength	0.1 6 nm	
	Duration	< 100 fs	
1/5/2011	ZITI	presentation by T. Gerlach	4 / 13

ziti				Informatik V
		DSSC – C	Overview	
•	DSSC - DEPFET	Sensor with Signal Compression		
•	High-speed foc (~100% detecti	al plane camera with high spatial re ion efficiency)	solution for X-rays of energies from 1	keV up to 10 keV
•	Combines high Be able to be s of the detector	energy resolution at low signal cha ensitive to single low energy photor r signals corresponding to up to 10 ⁴	rge with high dynamic range: ns and at the same time to measure a photons of 1keV per pixel	t other positions
•	A strongly non-	-linear characteristic is required		
		Energy range	0.5 20 keV (optimized for 0.5 4 keV)	
		Number of pixels	1024 x 1024	
		Sensor pixel shape	Hexagonal	
		Sensor pixel pitch	Approx. 200 um	
		Dynamic range / pixel / pulse	6000 photons @1keV	
		Resolution (S:N > 5:1)	Single photon @1keV (5 MHz) Single photon @0.5keV (2.5MHz)	
		Electronic noise	< 50 electrons r.m.s.	
		Frame rate	1 5 MHz	
		Stored frames per macro bunch ("train")	>= 512	
		Operating temperature	-30 °C optimum	
1/5	5/2011	ZITI presentatio	on by T. Gerlach	7 / 13

Die Large Scale Data Facility des KIT

Rainer Stotzka, Jos van Wezel

13

- Huge variety of communication protocols
- Open source

Institute for Data Processing and Electronics

Hochleistungs-UV-LED-Module

KIT – University of the state of Baden-Wuerttemberg and national large-scale research institution of the Helmholtz Association, Germany

www.kit.edu

Hochleistungs-UV-LED-Module

Warum?

- Innovative industrielle UV-Licht Applikationen zeigen große jährliche Wachstumsraten
- Lacke, Beschichtungen, Kleber, Druckfarben, Wasserbehandlung
- Übergang Quecksilber-Gasentladungslampen → UV-LEDs
 - ⇒ Verringerter Strom- und Kühlungsbedarf
 - Schmales Spektrum
 - Lange Lebensdauer
 - Instant-On

2

2010-09-28 Dr.-Ing. Marc Schneider - Hochleistungs-UV-LED-Module

Institute for Data Processing and Electronics

The ALICE TRD Global Tracking Unit

Felix Rettig University of Heidelberg Kirchhoff Institute of Physics SEI Workshop, KIT September 29th 2010

The Experiment ALICE

CERN

- pp @ 14 TeV
- PbPb @ 1150 TeV

ALICE

- Research on QGP in PbPb collisions
- Many detectors covering a wide momentum range & PID
- High multiplicity events in Pb-Pb collisions

ALICE 45

Task of the TRD

- High multiplicities: few thousand charged particle tracks in acceptance per event
- Fast trigger detector: L1 trigger after 6.2µs
 - Online reconstruction of high-pt tracks, calculation of pt
 - Various trigger schemes
- Barrel tracking detector: raw data for offline analysis
 - Raw data buffering & forwarding to data acquisition system
 - Support interlaced triggers and multi-event buffering, interface to ALICE central trigger

• Global Tracking Unit: 109 FPGAs

Overview ALICE TRD GTU - SEI Workshop, KIT - Felix Rettig

Overview ALICE TRD GTU - SEI Workshop, KIT - Felix Rettig

6/39

Tight Timing Requirements for Trigger

Global Tracking Unit

- GTU: Second Processing Stage
 - Three 19" racks outside L3 magnet
 - 109 custom PCAs with large FPGAs
- Level-I Trigger Contribution
 - Detection & full 3D reconstruction of high-pt tracks based on tracklets
 - Calculation of transverse momenta
 - Provides various trigger schemes: di-lepton decays (J/ ψ , Υ), jets, ...
- Raw Data Buffering
 - 2.1 Tbit/s via 1080 links from detector
 - Multi-event buffering & interface to ALICE DAQ system
 - Interlaced trigger sequences & extended error handling

Overview ALICE TRD GTU - SEI Workshop, KIT - Felix Rettig

10/39 ALCE 49

One GTU Segment

GTU segment for one TRD supermodule

Overview ALICE TRD GTU - SEI Workshop, KIT - Felix Rettig

Patch panel with 60 fibres for one TRD supermodule

36

GTU Processing Node

- CompactPCI card, 6U height
- 14 layer PCB
- Tier-specific assembly & add-on cards
- Virtex-4 FX100 FPGAs
- 2 Embedded PowerPC cores
- 64 MByte DRAM
- SDCard and ethernet connectors

Tracking - Track Matching

- 3D track matching: find tracklets belonging to one track
- Processing time less than approx. I.

 Particle

 Charge

 Cha
- 52

3/6

Tracking - Track Matching II

- · Projection of tracklets to virtual transverse planes
- Intelligent sliding window algorithm: $\Delta y, \Delta \alpha_{v_{ertex}}, \Delta z$
- Track: \geq 4 tracklets from different layers inside same window

Tracking - Track Reconstruction

- Linear fit on matching tracklets: line parameter a, sum of tracklet PID
- Primary vertex assumption
- Estimation of p_t from a: $p_t = \frac{const}{a}$, $\Delta p_t/p_t < 1\%$
- Fast p_t cut decision: $const \le |p_{t,min} \cdot a|$

Tracking - Design Overview

Tracking - Momentum Resolution

GTU

Beam Test 2007 Results:

- Accelerator: CERN Proton Synchrotron
- Electrons, Pions with $p_t 0.5 6 \text{ GeV/c}$
- 8 days of continuous operation, few million events
- GTU algorithm: $\Delta p_t/p_t < 1\%$
- TRD total: $\Delta p_t/p_t < 3\%$

Tracking - Processing Time

- Minimum latency of about 550 ns
- Slow nearly linear rise with number of tracklets
- Total latency depending significantly on number of tracklets

Tracking - Efficiency

Tracking - Latest Collisions at LHC

- 7 supermodules installed, data taking with collisions
- Tracklet tuning ongoing: resolution + availability time
- Latest GTU tracking results:

ermouure or,	, Stack 2:					
id L0 sequer cking in tir cking durati cking done a cks (num/cn)	<pre>ices (34178 ne (<6us): ion: after L0: t):</pre>	87 of 341789 99% (3416 0.6us: 33 5.5us: 18 0: 340842	=99%): 54/341787) 9928 0.7us: 6686 6.0us: 1: 933 2:	1723 0.9 154620 6.5 :12	us: 3 4. us: 348 8.	5us: 133 Ous: 133
Run 12488	6 2010-07 r Stock	-02 - 17m,	341787 event	s, 3.5 TeV	p-p, Trigge	er 333 Hz
========	==========	============		===========		=======
SEGMENT 0	0	561	957	142	890	961
SEGMENT 0	1	615	863	760	636	1011
SEGMENT 0	7	488	576	262	96	504
SEGMENT 0	8	593	481	441	570	442
SEGMENT 0	9	475	607	328	692	817
SEGMENT 1	0	910	937	710	554	906
SEGMENT 1	7	865	373	540	192	552
SEGMENT I	, =========		373	540 =======		

Track word: • a (18 bits) • PID (≤12 bits)

stack (3 bits)

• b (≤18 bits)

contrib. layer mask (6 bits)

z information (≤ 7 bits)

21,307 tracks in 341,787 events (6%)
 21 GTU tracks/s

Overview ALICE TRD GTU - SEI Workshop, KIT - Felix Rettig

Triggers - Scopes

- Tracking in tier 0
 - transverse momentum
 - y & z position
 - particle type
- Trigger in tier I segment level
 - single high-pt trigger
 - jet trigger (full z coverage)
- Trigger in tier 2 detector level
 - jet trigger (full Φ coverage), multi-jets
 - di-lepton decay trigger

Triggers - Cosmics

36 Overview ALICE TRD GTU - SEI Workshop, KIT - Felix Rettig

Trigger operating only on tracklets, without tracking

- 12/2007-10/2008
- First LI trigger running in ALICE
- 4 TRD supermodules
- L0 triggers by TOF or random pulser
- Purity: >93 %
- L1/L0_{TOF} ratio: ~1/20
- LI rate: 0.05 I Hz
- 55,000 events taken

Triggers - Cosmic Example

Triggers - Jet Trigger

- Consider tracks within fixed geometric regions
- Threshold conditions:
 - Number of tracks above pt threshold
 - Sum of momenta for those tracks
- Variations:

- State Balling Street St N tracks above p_{t1} and M tracks above p_{t2} , ...

• Tier I: jet detection overlapping areas in z-direction

Tier 2: multi-jet coincidence •jet detection with overlapping areas in Φ -direction

Triggers - Di-Lepton Decay

- Simple version: detect e^+ & e^- with p_t > threshold
- Advanced version: find e^+e^- pairs with invariant mass within certain range $(J/\Psi, \Upsilon, ...)$
- Huge combinatorics for Pb-Pb collisions
- Current study:
 - Pre-selection of relevant track candidates feasible?
 - Application of sliding window algorithms
 - Massively parallelized invariant mass calculation with full utilization of computing resources provided by the Virtex-4 FPGA

Multi-Event Buffering - Tier 0

- I6→I28 bit collation & I25→200 MHz crossing via dual-port BRAMs
- Wide data streams at high frequencies
 → many pipeline stages
- 128-bit wide 12:1 muxs at 200 MHz needed
- Dedicated highperformance SRAM controller with optimal write/read arbitration
- Storage of 2 write and 1 read pointers for each link in one BRAM
- Wide counters and arithmetics at 200 MHz

Dual PowerPC System

- 109 Virtex-4 FX100 \rightarrow 218 embedded PowerPC cores
- High-Level PowerPC
 - Running Linux for system control purposes
 - Xilinx 2.6.30 kernel + BusyBox (later Gentoo)
 - Tier I & 2: optical gigabit ethernet with MGT/EMAC planned, tier I as "switch" for tier 0 using PPP
- Low-Level PowerPC
 - Real time operations with tight time requirements
 - Extended multi-event buffering control
 - Low-level monitoring, statistics gathering
 - Designed for minimum latency & resource usage
- Interconnection between PowerPCs
 - Shared BRAM memory with hardware mutex support

PowerPCs System

Tier 0 Design, Rev. 1712

Sur 17 1 Harrison	
	l
	CY
	В
	Dis
to the set of the set	
Overview ALICE TRD GTU - SEI Workshop, KIT - Feli	x Rettig

Res.	Event Buffering	Tracking	PPCs
FF	10,945	8,863	3,733
LUT	5,925	23,463	4,086
CY / DSP	2505	8,507 / 9	346
BRAM	14	132	88
Dist. mem	32	1221	187

Total slices: 38,910 (92%) Total LUTs: 53,406 (63%) Global clocks: 16 (50%) Block RAMs: 248 (65%)

Tracking 🗾 Event Buffering 🚺 PowerPC

Build and Simulation Flow

Build and Simulation Flow

Outlook

First Pb-Pb collisions in November...

High multiplicities, combinatorics explode

- Tracking almost consumes all time available for trigger
- Jet and high-pt trigger in operation
- Ideas:
 - Tuned L1 triggers (6-8µs)
 - Elaborate L2 triggers (80µs)

Thank You for Your Attention!

Contact: Felix Rettig rettig@kip.uni-heidelberg.de

Prof. Dr. Volker Lindenstruth Chair of Computer Science Kirchhoff Institute of Physics University of Heidelberg

Current TRD Supermodule Status

- 7/18 Supermodules installed
- 18/18 GTU segments installed

С	16	С	17	С	18
00	09	03	12	06	15
01	10	04	13	07	16
02	П	05	14	08	17
		final cabling	no cabli	ng	

PowerPCs - Performance

Parameter	Core: 200 MHz IOCM: 100 MHz DOCM: 100 MHz	400 MHz 200 MHz 100 MHz	400 MHz 200 MHz DCache
Main loop period (I2C,)		57ms	
Interrupt \rightarrow first handler instruction	I.I3μs (226 icycles)	I.05µs (420)	0.37µs (148)
second handler instr.	I.25µs (250)	1.13µs (452)	0.45µs (180)
third handler instr.	I.37µs (274)		
4. if condition check	3.43µs (686)		I.54µs (580)
if (true condition) {	540ns (108)		
if (false condition) {} else {	540ns (108)		

Overview ALICE TRD GTU - SEI Workshop, KIT - Felix Rettig

ALICE Trigger Hierarchy

Trigger	Pre-Trigger	Level-0	Level-I	Level-2	High-Level
Time after Interaction	0.3 µs	Ι.2 μs	6.5 µs	~ 88 µs	> 1 ms
Average Rate (Pb-Pb)	~ 5000 Hz	~ 5000 Hz	~ 400 Hz	~ 200 Hz	~ 100 Hz
Description/ Use	TRD Specific Wake-Up	Strobe to Sampling Electronics	Major Rate Reduction	TPC Past- Future Protection	Software Trigger, Data Compressio n
TRD Contributio n	generated for TRD	TRD contributes to L0 via Pre-Trigger	TRD contributes to LI via GTU	_	_

Zukünftige Pläne für das Experiment zur Suche nach Axionen (ALPS Experiment)

Dieter Notz Deutsches Elektronen-Synchrotron, DESY, Hamburg, Germany EMAIL: <u>Dieter.Notz@desy.de</u> SEI Tagung KIT Karlsruhe, 27. – 29. 9. 2010

Zusammenfassung

Auf der Frühjahrstagung 2007 in Rossendorf hatte ich das Experiment ALPS (Axion like particle search) vorgestellt. Axionen sind hypothetische Teilchen mit einer winzigen Masse im milli-eV Bereich. Auf der Herbsttagung 2009 bei BESSY II zeigte ich, wie wir die Intensität des Laserstrahls im Laufe der Zeit von 3.5W -> 17 W -> 35 W ->1238W steigerten und damit die Wahrscheinlichkeit für die Existenz für neue Teilchen weiter reduzieren können. In diesem Bericht wird gezeigt, wie wir die Grenzen noch weiter verschieben können.

Die Teilchen die wir suchen sind Axion-ähnlich. Die Masse beträgt etwa 0.001 eV (1 meV). Erzeugt werden sie in einem Prozess, bei dem Photonen von links kommen, eine Wechselwirkung

mit einem Magnetfeld machen und Axionen Φ erzeugen. Diese fliegen weiter und durchdringen ohne Störungen einen Absorber, während alle anderen Photonen absorbiert werden. Hinter dem Absorber können die Axionen mit einem 2. Magnetfeld wechselwirken und wieder ein Photon

generieren (Regenerationsexperiment, Licht durchscheint eine Wand). Diese wenigen Photonen werden in einem Detektor nachgewiesen.

Wir können also verbessern:

- 1. Die Lichtquelle mit vielen Photonen in der linken Kavität und eine Verstärkung in der rechten Kavität;
- 2. längere und stärkere Magnete und
- 3. empfindlichere Detektoren.

Laser in der linken Kavität

Bisher haben wir für unser Experiment grünes Laserlicht benutzt, da unser Detektor in diesem Bereich empfindlich war. Auch ist das Arbeiten mit sichtbarem Licht einfacher als im IR. Ausgangspunkt für den grünen Laser war aber ein Infrarot Laser, dessen Frequenz verdoppelt wurde. Bei diesem Vorgang ging viel Intensität verloren. Im zukünftigen Experiment werden wir mit Infrarot arbeiten. In der linken Kavität streben wir ein Power-Built-Up von 5000 an, d. h. das Licht wird zwischen den Spiegeln 5000 mal hin und her reflektiert (bisher etwa 1000 mal).

Verstärkung in der rechten Kavität

Um die von Axionen erzeugten Photonen hinter der Wand besser nachweisen zu können, wird hinter der Wand auch eine Kavität aufgebaut. Diese könnte folgendermaßen aussehen: Durch den hinteren Spiegel der linken Kavität dringt noch etwas Infrarot hindurch. Diese Restmenge wird um 90 Grad abgelenkt und in einem nichtlinearen Prozess einer second hamonic generation (SHG) in einem PPKTP Kristall (periodically poled KTiOPO₄) in grünes Licht umgewandelt. In der rechten Kavität benutzen wir Spiegel vom Typ double high reflective DBHR), die rot und grün reflektieren. Da die Reflexionsschichten nicht an derselben Stelle liegen, hat die rechte Kavität für Infrarot und Grün eine etwas unterschiedliche Länge. Deshalb muss das grüne Licht in einem akustisch-optischen Modulator (AOL) etwas in der Frequenz angepasst werden. Mit Hilfe eines elektro-optischen Modulators (EOL) wird die Phase oder die Polarisation des grünen Lichts gedreht. Mit Hilfe diese Lichts wird die rechte Kavität in Resonanz gebracht (gelockt), indem man die Länge durch Piezo Kristalle variiert. An Ende des Prozesses wird das grüne Licht absorbiert. Wenn die rechte Kavität für grünes Licht abgestimmt ist, das ist sie es auch für rotes Licht. Der Power Built-Up für die rechte Kavität soll etwa 40 000 betragen. Dieser Wert kann so hoch sein, da die Lichtintensitäten rechts viel kleiner sind als links, so dass die Spiegel nicht so schnell zerstört werden.

Es muss sichergestellt werden, dass das grüne Licht in der rechten Kavität keinerlei Infrarot enthält, da dies sonst ein Axion-Signal vortäuschen könnte. Ferner darf in den Detektor kein grünes Licht gelangen, da dies evtl. auch im Detektor ein Signal geben könnte. Zum Filtern des Lichts dienen vier hintereinandergestellte schräge Spiegel.

block all direct laser photons

t i t i o j i o j i o j i o j i o j j 10

Bild von Benno Willke, Albert-Einstein-Institut, Hannover

Magnete

Bisher benutzten wir für unser Experiment einen HERA Magneten mit Spiegel und Wand in der Mitte. In einem zukünftigen Experiment wollen wir mit 6 + 6 (260 Tm) HERA Magneten oder mit 2+2 LHC Magneten arbeiten. Bei den Magneten ist zu berücksichtigen, dass diese einen Krümmungsradius haben, um dem Beschleuniger zu folgen. Dies hat den Nachteil, dass besonders bei den HERA Magneten die Apertur recht klein wird, um auf die vorgesehene Länge einen Laserstrahl durch das System zu bekommen.

Detektoren

Die Detektoren sollen einzelne Photonen nachweisen und dabei nicht durch Rauschen gestört werden. Hier werden verschiedene Möglichkeiten untersucht.

Heterodyn Prinzip

Ähnlich wie bei einem Überlagerungs-Radioempfänger versucht man, das schwache Signal mit dem Signal eines lokalen Oszillators zu überlagern und die Differenzfrequenz zu verstärken. Wie so etwas im Detail aussieht, wird z. Zt. untersucht.

Transition Edge Sensor (TES)

Dieser supraleitende Sensor basiert auf dem Bolometer Prinzip. Durch Absorption von einigen Photonen wird dieser Sensor normalleitend. Das Signal wird dann nachgewiesen. Zum Auslesen eignen sich *Squids* (*Squid* = Superconducting Quantum Interference Device) oder *JFETs* (Junction field effect Transistoren).

CCDs, HgCdTe

Teure Pixel Detektoren sind unter anderem HgCdTe HAWAI 2RG. Diese werden von der ESO im Weltraum benutzt.. Infraroteffizienz für Wellenlängen von 0.85 μ m – 2.5 μ m. Früher wurden diese Detektoren mit wenigen Pixeln hergestellt (so wie wir sie brauchen); heute leider nur mit vielen Pixeln, um Fotos zu machen.

Nanowire SSPD

Eine andere Möglichkeit sind Detektoren basierend auf Nanowire SSPD (superconducting single photon detectors) mit MoRe Molybden-Rhenium bei $T_c = 7.7$ K.

Ausblick

Es werden die verschiedenen Optionen in den nächsten Jahren studiert. Heute sind noch viele Fragen offen.